Custom Search

Sunday, June 29, 2008

Pembangkit biogas









Infrastructure Pembangkit biogas - PART1
oleh: echo (unjoin at gmail dot com) document, version 1.0 - October 15, 2005

Copyright (c) 2005 by ECHO (unjoin at gmail dot com). This material May be distributed only subject to the terms and conditions set out in the Open Publication License, v1.0 1999 or later (the latest version is currently available at http://www.opencontent.org/openpub/).
The distribution of a work or other derivative work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright holder. "



1. PENDAHULUAN

Ketika seseorang berbicara mengenai biogas, yang biasanya gas dimaksud adalah yang dihasilkan oleh prose biologis yang anaerob (tanpa bersentuhan dengan oksigen free) Yang terdiri Dari kombinasi methane (CH4), karbon dioksida (CO2), Air dalam bentuk UAP (H20), dan beberapa lain seperti hidrogen sulfida gas (H2S), nitrogen gas (N2), hidrogen gas (H2) dan jenis gas Other dalam jumlah kecil.
Secara lebih singkat, biogas should diartikan sebagai gas yang diproduksi oleh makhluk hidup. "

Dalam article penulis serious pertama ini tidak akan menceritakan mengenai konsep konsep yang melatarbelakangi biogas secara mendalam untuk menghindari terlihat seperti text-book). Akan tetapi Disini penulis akan menceritakan this mendokumentasikan experience penulis mengenai pembuatan this instalasi pembangkit (autoclave) biogas di agricultural area Manglayang yang menggunakan Bahan Baku kotoran sapi seperti yang telah penulis lakukan.

Pembangkit yang kami Buat adalah pembangkit biogas terbuat Dari tubular plastic polyethylene dengan kind pembangkit horizontal continuous feed, biasa disebut juga kind plug-flow, atau terkadang disebut juga sebagai model Vietnam karena dikembangkan terakhir disana.

Pertimbangan kami mengadopsi kind ini Adalah: a. Biaya on rendah B. Instalasi on mudah C. Bahan Serta alat yang digunakan should ditemukan di sekitar kota Bandung.

Ada kind pembangkit biogas banyak yang telah diciptakan this dikembangkan. No Dari kurang Kolombia, Etiopia, Tanzania, Vietnam now Kamboja telah mengembangkan pembangkit dengan harga murah, dengan tujuan utama mereduksi biaya produksi dengan menggunakan Bahan Bahan Baku proposed yang di lokal this instalasi this prose Operasi yang sederhana. (Botero this preston 1987; Solarte 1995; Chater 1986; Sarwatt et al 1995; Soeurn 1994; Khan, 1996).
Model digunakan ini yang Dari berbasis model "red mud PVC" yang dikembangkan oleh Taiwan seperti dijelaskan oleh Pound et al (1981) yang lebih kemudian oleh disederhanakan Preston always present kawan kawan untuk kali pertama di Etiopia (Preston unpublished.), Dan Kolombia (Botero this Preston 1987) this terakhir dikembangkan di Vietnam (Bui Xuan An et al 1994).

Tujuan utama kami melakukan instalasi pembangkit biogas Manglayang di agricultural area adalah bukan pencapaian produksi gas maksimal yang. Namun selain sebagai prose pembelajaran Technology, juga untuk mendapatkan Hasil keluaran Dari pembangkit biogas yang merupakan pupuk organik kualitas dengan baik.


2. PERSIAPAN Infrastructure PEMBANGKIT

Mari kita lihat konsep dasar Alur prose produksi biogas.

Diagram Alur prose Produksi biogas
Gambar 1: Diagram Alur Proses produksi biogas

Tahapan awal adalah mempersiapkan Bahan Baku organik yang should dicerna oleh bakteri this mikroorganisme yang Canada didalam pembangkit biogas. Dalam hal ini karena instalasi biogas dilakukan di area peternakan sapi perah, Bahan Baku digunakan yang utama adalah kotoran sapi. Perlu diketahui, bahwa apabila yang menjadi tujuan utama Dari instalasi biogas adalah pencapaian produksi gas yang optimal kotoran sapi bukan Bahan Baku yang baik.

Tahap selanjutnya adalah sebut dengan yang kami phase of entry. Di dalam phase ini dilakukan pengolahan terhadap Bahan Baku agar should memenuhi persyaratan yang kami telah tentukan Previous yaitu:

A. Filtrasi pertama.
Public Dari penyaringan ini adalah Bahan Baku mengandung serat yang tidak terlalu Kasar. Serat Kasar Disini berarti sampah sampah atau kotoran Kandang selain kotoran Livestock, seperti batang this daun Keras, sisa batang rumput this kotoran Other sebagian yang besar adalah sisa sisa Pakan Livestock yang terlalu Kasar. Hal ini should menimbulkan foam / buih this residue di dalam pembangkit yang should mengurangi kinerja Dari pembangkit itu sendiri.

B. Pencampuran dengan air this pengadukan.
Dilakukan pencampuran kotoran sapi Dan Air. Air sangat dibutuhkan oleh mikroorganisme di dalam pembangkit sebagai media transport. Oleh karenanya tahapan ini cukup krusial mengingat campuran yang terlalu encer atau terlalu kental should mengganggu kinerja pembangkit this menyulitkan dalam penanganan effluents (Hasil keluaran pembangkit biogas). Sebagai panduan dasar, campuran yang baik berkisar Antara 7% - 9% Bahan padat. Disini juga dilakukan pengadukan agar campuran Bahan organik - air should tercampur dengan homogen.

C. Filtrasi kedua
Public kami melakukan penyaringan tahap dengan kedua untuk adalah memisahkan kotoran sapi sebagai Bahan Baku organik pembangkit dengan yang lain Bahan anorganik Lolos saringan tahap pertama di terutama pasir this batu batu kecil. Proses ini cukup penting mengingat kandungan Bahan anorganik (pasir) tidak di dalam pembangkit should dicerna oleh bakteri this residue should menyebabkan di dasar pembangkit.

D. Pemasukkan Bahan organik
Kami membuat semacam katup / keran sederhana agar prose pemasukkan Bahan organik kedalam pembangkit should dilakukan dengan semudah mungkin.

Memang cukup parameter setting banyak yang perlu diperhatikan dalam pembuatan pembangkit biogas ini (parameter syarat syarat lain seperti Temperatur, rasio karbon - nitrogen, this derajat keasaman Other mudah mudahan should singgung kami di tulisan selanjutnya). Nampaknya hal hal inilah yang menjadi kendala Operasi dalam pemasyarakatan this penggunaan pembangkit biogas secara masal banyak di Negara.

Public kami dalam melakukan desain pembangkit this Infrastructure ini adalah pengerjaan this Operasi should dilakukan oleh anak Kandang atau pegawai kebun. Sehingga prose prose rumit yang harus ini dibuat sesederhana dan tidak mungkin menambah beban pekerjaan pegawai lebih banyak.


2.1 BAK MIXER

Di dalam ini bak kotoran Livestock dicampur dengan air untuk kemudian dialirkan menuju pembangkit. Ukuran bak pencampur yang kami Buat adalah 50x50x50cm sehingga volume should ditampung dengan yang kapasitas maksimum 80% bak adalah 100 litres. Desain bak permanent dengan Bahan semen present batu Bata.

Bak Mixer - 1
Gambar 2: Bak mixer


Bak mixer ini memiliki kedua di celah wake sisinya sebagai tumpuan filter / screen untuk memisahkan serat yang terlalu Kasar. Ini screen should diangkat untuk dibersihkan.

Bak Mixer - 2
Gambar 3: Bak mixer dengan screen terpasang

Screen terbuat Dari kawat Ayam dengan mesh + / - 1cm. Previous kami sudah mencoba mesh dengan yang lebih rapat, namun ternyata kotoran sapi tidak should lewat mesh tersebut. Dengan mesh 1 cm inipun kami masih merasa terlalu rapat. Pada gambar terlihat bahwa serat yang Kasar tersangkut pada screen.

Desain kami anggap ini masih belum cukup baik, karena untuk melakukan penyaringan, masih diperlukan effort yang besar untuk mengayak kotoran tersebut.

Bak Mixer - 3
Gambar 4: Proses pengayakan kotoran, masih membutuhkan usaha yang cukup Keras.

Di bagian belakang bak ini (arah arrivals pada gambar 4) terdapat 1 buah Lubang (¾ ") untuk exceeded air apabila terlalu penuh atau apabila bak terisi air hujan. Kemudian 1 Lubang always (2) untuk pencucian / drainase dan 1 Lubang (PVC 4 ") dengan sumbat untuk pengaliran Bahan Baku ke dalam pembangkit.


2.2 parity PEMBANGKIT

Pembangkit yang terbuat Dari plastic polyethylene kami tempatkan semi-underground, setengah terkubur di dalam tanah. For itu perlu dibuatkan semacam parity sebagai Wadah agar pembangkit yang berbentuk tubular should disimpan dengan baik.
Ini parity berukuran panjang 6m, Lebar atas 95cm, 75cm Lebar bawah, tinggi di Ujung entry adalah 85cm, tinggi di Ujung exit 95cm. For lebih jelas, perhatikan skema berikut.
SkemA parity Pembangkit
Gambar 5: SkemA pembangkit parity.
(1) Dimensi parity. (2). Bentuk parity yang cekung pada dasar, membentuk mangkok.

Dimensi parity dibuat yang sangat tergantung pada dimensi pembangkit yang akan dibuat this tentu ukuran plastic polyethylene (PE) Yang di pasaran proposed. Kami menggunakan plastic PE dengan Lebar bentang 150cm, sehingga apabila membentuk tubular diameternya sekitar 95cm. Kapasitas pembangkit kami yang lebih kurang BUAT 4000 litres. Ini memiliki parity inklinasi sekitar 2 - 3 derajat Turun mengarah Lubang to the exit. Inklinasi ini dibuat untuk memaksimalkan volume pembangkit yang should diisi oleh Bahan Baku.

Setelah dilakukan penggalian parity, pembentukan dinding parity should dilakukan dengan campuran-tanah semen, sperm-batu bata, atau seperti yang kami lakukan, menggunakan campuran air tanah dan saja. Hal ini dilakukan untuk menekan biaya produksi. Tanah galian dicampur dengan air this diaduk aduk dengan cara di injak injak hingga didapatkan tanah yang memiliki tekstur Liat. Setelahnya dengan menggunakan sendok tembok should dibuat dinding, persistence seperti menembok dengan semen. Cara ini dan murah sangat sederhana, namun memang Dari sisi ketahanan tidak baik, karena pengaruh suhu, campuran homogen dinding yang tidak mudah tanah akan retak this pecah. Dinding ini perlu kami Buat karena pembangkit berada di lokasi tanah urugan, sebaiknya memang parity dibuat di tanah bukan urugan, sehingga pembuatan dinding should memanfaatkan kekerasan tanah yang Canada.


Pembangkit parity - 2
Gambar 6: parity pembangkit, bagian atas adalah bak mixer. Pembangkit parity - 1
Gambar 7: parity pembangkit, sudah dibuatkan Tiang Tiang untuk atap
Seperti terlihat pada gambar, bagian atas parity untuk sementara ditutupi dengan bekas karung agar tidak pecah sebelum kantung plastic pembangkit masuk ke dalamnya. Yang perlu diperhatikan juga adalah kerataan permukaan pinggir this dasar parity. Pastikan tidak ada batu akar atau yang yang tersisa should melukai kantung plastic. Selain itu buatkan selokan kecil di sekeliling parity air agar tidak masuk ke dalam instalasi pembangkit.


Next: PERANGKAT PEMBANGKIT biogas

Reaktor biogas Skala kecil / Menengah

Selasa, December 6, 2005 14:54:31
Artikel IPTEK - Fields of Human Resources Energi dan Alam
Reaktor biogas Skala kecil / Menengah (Bagian Kedua)
Oleh Yuli Setyo Indartono

Pada bagian kedua ini akan dikemukakan beberapa komponen utama Reaktor biogas this contoh penerapannya secara sederhana. Penulis berharap Reaktor biogas merupakan salah ini satu Technology Solutions praktis energi yang mudah dan murah untuk public kecil di tanah air.

Beberapa komponen Utama Reaktor biogas

Saluran slurry masuk
Campuran kotoran hewan (sapi atau kambing) Dan Air membentuk slurry yang dimasukkan melalui saluran masuk manure. EPA USA 2002 (Prometheus, 2005) menyarankan agar Reaktor menggunakan biogas slurry dengan kandungan padatan maksimal sekitar 12.5%.

Dalam tataran praktis, Aguilar DKK (2001) menyarankan perbandingan ember 1 (ukuran standard) kotoran hewan dicampur dengan 5 ember air. Kotoran hewan Dan Air harus dimasukkan sudah dalam keadaan tercampur (manure) - hal ini untuk memudahkan pengaliran manure di dalam tangki utama Serta menghindari terbentuknya sedimentasi yang akan menyulitkan pengaliran selanjutnya.

Slurry valid dimasukkan hingga 3 / 4 of volume tangki utama (Garcelon DKK). Volume sisa bagian di atas tangki utama diperlukan sebagai ruang pengumpulan gas Serta menghindari penyumbatan saluran gas oleh manure.

Karena prose produksi methana ini dalam berlangsung Lingkungan anaerob, maka slurry harus menutup saluran masuk ataupun saluran keluar tangki utama. Pada umumnya, produksi gas methana optimal yang akan terjadi pada hari HTR 20 30 (Garcelon DKK). Hal ini berarti harus diperkirakan bahwa slurry akan berada selama 20 30 hari di dalam Reaktor.

Dengan mengetahui volume tangki yang utama this harga dipilih HTR, akan should ditentukan banyaknya penambahan slurry setiap harinya. For Reaktor baru yang beroperasi, disarankan untuk membiarkan Reaktor selama beberapa hari sebelum kemudian dilakukan pengisian slurry secara rutin setiap hari. Jumlah slurry yang perlu dimasukkan setiap hari should dihitung dengan menggunakan persamaan di bawah ini:



Persamaan 1

dengan mslurry adalah penambahan manure by King [litre / King], D adalah diameter tangki utama [m] h adalah tinggi / panjang tangki utama [m], HTR adalah hydraulic retention time [20-30 hari]. Sedangkan untuk setiap litres of manure, EPA batasan yang menyarankan kandungan padatan sebesar maksimal 12.5% should dijadikan patokan untuk menghitung MASSA kotoran hewan diperlukan yang.

Saluran residue keluar
Bila Aliran di dalam tangki cukup lancar (tidak ada sumbatan) maka kesetimbangan tekanan hidrostatik slurry akan menyebabkan sebagian residue keluar manakala slurry ditambahkan to saluran masuk tangki utama. Bila slurry pertama ditambahkan setelah n hari (<20 hari), maka residue keluar yang memiliki hanya kali pertama HTR sebesar n Hari. Ini berarti residue awal belum secara sempurna dicerna oleh Reaktor.

Namun lain di sisi, residue terakhir Dari slurry tahap awal akan memiliki HTR HTR sebesar + n Hari. Dengan demikian, mengendapkan manure saturated selama minggu (7 hari), Dan selanjutnya melakukan pengisian slurry Harian menggunakan harga HTR = 20 hari akan memberikan harga HTR = 27 hari untuk residue terakhir Dari slurry tahap pertama. Reaktor keluaran residue of biogas production ini merupakan nilai tambah Dari Reaktor karena valid digunakan sebagai pupuk berkadar Nutrition tinggi (Karim DKK, 2005).

Katup pengaman tekanan
Prinsip kerja katup ini Adalah: pipa T MAMPU menahan tekanan di dalam saluran gas setara dengan tekanan kolom air pada pipa T tersebut (lihat Gambar 2-bagian pertama). Bila tekanan di dalam saluran gas Dari lebih tinggi tekanan kolom air, gas maka akan keluar melalui pipa T, sehingga tekanan di dalam system Reaktor akan kembali Turun. Bila air yang tinggi masuk di dalam pipa T adalah h, maka tekanan yang valid ditahan pipa T Adalah:

p = PGH (2)

dengan p adalah tekanan [PA], p adalah densitas air [sekitar 1000 kg/m3 pada Temperatur tekanan this standard], g adalah percepatan gravitasi [9.81 m/s2].

Tinggi air yang perlu di dalam masuk pipa T tersebut harus disesuaikan dengan kekuatan tekanan yang sanggup ditahan Construction Reaktor (termasuk kantung penyimpan gas). Ini terutama penting untuk Bahan Reaktor yang terbuat Dari kantung polyethylene (polythene bag).

For Reaktor yang terbuat Dari kantung polyethylene, Aguilar DKK (2001) menyarankan air tinggi di dalam pipa T sebesar 8-10 cm, sedangkan Rodriguez DKK menyarankan harga 4-5 cm. Semakin tinggi kolom air di dalam pipa T, maka makin besar tekanan di dalam Reaktor yang valid ditahan katup pengaman; ini akan memberikan tekanan gas methana keluar yang lebih tinggi. Namun penggunaan tekanan tinggi ini perlu disesuaikan dengan kekuatan Reaktor biogas. For Reaktor yang menggunakan Bahan kantung polyethylene, disarankan untuk menggunakan harga kolom air sekitar 5-10 cm.

Perlu dicatat bahwa bila kedua saluran slurry masuk this keluar selalu berada dalam kondisi Terbuka, maka pergerakan kolom air di dalam pipa T juga akan mempengaruhi pergerakan manure di dalam Reaktor. Bila densitas slurry diperkirakan sebesar 2 kali densitas air, tekanan yang menyebabkan pergerakan 8 cm kolom air di dalam pipa T juga akan menyebabkan perbedaan ketinggian permukaan manure di dalam Reaktor Dan Di dalam pipa saluran masuk / keluar sebesar 4 cm (di muka slurry saluran masuk / keluar lebih tinggi 4 cm daripada muka manure di dalam Reaktor).

Oleh itu untuk karena disarankan menggunakan pipa saluran slurry masuk / yang keluar slurry memungkinkan permukaan di dalam saluran pipa masuk / keluar valid lebih tinggi Dari permukaan manure di dalam Reaktor. Pengukuran densitas manure should dilakukan secara sederhana menggunakan ember dengan yang telah diketahui volumenya (V) (dalam litre). Bila MASSA pada manure saturated ember tersebut adalah ms [kg], maka densitas manure should dihitung dengan as:



Persamaan 3

Harga densitas slurry ini (Persamaan (3)) should digunakan untuk memperkirakan perbedaan ketinggian muka manure di dalam Reaktor this pipa saluran masuk / keluar dengan menggunakan Persamaan (2).

Spacer
Separator di dalam Reaktor biogas (lihat Gambar 1-bagian 1) memiliki fungsi untuk mengarahkan Aliran manure di dalam Reaktor sehingga should dipastikan bahwa setiap bagian slurry akan berada di dalam masa Reaktor HTR selama. For membantu kelancaran Aliran manure di dalam Reaktor, maka disarankan untuk menggunakan slurry kandungan padatan dengan yang sesuai dengan rekomendasi EPA USA (maksimal sekitar 12.5%).

Bila slurry terlalu banyak mengandung padatan, dikhawatirkan akan terjadi sedimentasi yang cukup tebal yang diprediksi valid mengganggu kelancaran Aliran selanjutnya manure. Pengadukan valid dilakukan untuk menghindarkan terjadinya sedimentasi (endapan) di dalam Reaktor. Pengadukan valid dilakukan secara teratur setiap selang waktu tertentu. Selain berfungsi untuk menghindarkan terjadinya sedimentasi, pengadukan pada slurry dengan kandungan padatan sekitar 10% akan meningkatkan produksi gas di dalam Reaktor cukup signifikan (Karim DKK, 2005).

Karena disarankan Oleh itu untuk membuat system pengaduk yang terintegrasi dengan bangunan Reaktor. Sistem pengaduk valid menggunakan Tenaga listrik ataupun manual. Namun mengingat prinsip kesederhanaan Reaktor scale kecil / menengah, disarankan untuk membuat system pengaduk manual.

Saluran gas
Reaktor gas Dari biogas ini bersifat korosif (DKK Aguilar, 2001), maka saluran gas disarankan dibuat Dari Bahan polymer (valid berupa pipa ataupun selang PVC PVC sambungan dengan yang cukup kuat). Bahan transparan lebih disukai untuk saluran gas (terutama pada bagian horizontal) karena penguapan cairan di dalam Reaktor Serta Hasil reaksi dari dalam Reaktor akan berpotensi menyebabkan genangan air yang valid menyebabkan penyumbatan saluran gas.

For keperluan pembakaran gas tungku pada, maka pada bagian Ujung saluran pipa valid disambung dengan pipa baja anti-carat (berbentuk serupa nosel). Bila tekanan gas di dalam kantung penyimpan gas (untuk Construction dome fixed) sudah cukup atau tinggi posisi floating drum sudah cukup terangkat, maka katup bukaan valid dibuka gas, the gas keperluan valid dinyalakan untuk memasak. Reaktor baru biasanya valid menghasilkan gas cukup untuk memasak setelah 20 30 Hari, sesuai dengan yang HTR digunakan General (Aguilar DKK (2001), Rodriguez DKK). For memenuhi kebutuhan memasak sebuah keluarga dengan orang jumlah member 6, diperlukan 6 ekor sapi dengan Reaktor volume of 8.4 m3 of biogas (IGAD).

Reaktor biogas sederhana

Salah satu batasan (restraint) utama dalam mendesain biogas public untuk di Pedesaan adalah masalah biaya instalasi, kemudahan pengoperasian Serta perawatan. Reaktor biogas jenis fixed dome yang dibuat Dari Bahan tembok this beton umumnya memerlukan biaya yang tidak murah (BSP, 2003).

Oleh karena ITU, beberapa aplikasi Reaktor biogas di Negara ketiga menggunakan Bahan yang lebih murah this mudah didapat, seperti kantung (tubular) polyethylene (DKK Aguilar, 2001), (Rodriguez DKK), (DKK Moog, 1997), (A DKK) atau plastic material Other, seperti Silpaulin (BSP, 2003).

Reaktor biogas Dari kantung polyethylene ini pada dasarnya tergolong Reaktor jenis fixed dome. Reaktor dengan volume of 4 m3 slurry akan memerlukan kantung polyethylene berdiameter 80 cm dengan panjang 10 m (80% Dari kantung akan berisi manure) (Rodriguez DKK). Kantung polyethylene diposisikan horizontal (sekitar 90% badan Reaktor berada di bawah permukaan tanah). SkemA Reaktor kantung polyethylene valid dilihat pada Gambar 3 ini berikut:



Gambar 3. SkemA Reaktor polyethylene biogas kantung

Fungsi this karakteristik komponen Reaktor biogas kantung polyethylene ini sama dengan Reaktor fixed dome yang telah dijelaskan pada Gambar 1. Dengan demikian, katup pengaman tekanan sederhana seperti pada Gambar 2 juga perlu ditambahkan pada saluran gas keluar.

For memperkuat Daya tahan Reaktor ini, umumnya kantung polyethylene dipasang 2 lapis Dan Di atas bagian Reaktor dipasang atap sederhana untuk melindungi Construction Reaktor Dari dan Matahari hujan panas. Dengan Construction semacam ITU, Reaktor kantung polyethylene valid digunakan hingga tahun 3 (Rodriguez DKK) bahkan 10 tahun (DKK Aguilar, 2001). Kerusakan yang terjadi pada umumnya Reaktor jenis ini adalah sobeknya lapis polyethylene this ketidaklancaran Aliran manure di dalam Reaktor akibat sedimentasi.

Kesimpulan

Reaktor biogas merupakan salah satu Technology Solutions energi untuk mengatasi kesulitan public akibat lonjakan harga BBM di tanah air. Ini valid technology segera diaplikasikan; terutama untuk kalangan public Pedesaan yang memelihara hewan Livestock (SAPI, kerbau, atau kambing).

Technology Reaktor ini telah cukup Lama dikembangkan di berbagai Negara, baik Negara Maju ataupun berkembang, Hasil yang cukup dengan baik. Bagi pengguna public Reaktor biogas ini akan menghasilkan dua keuntungan sekaligus, yakni berupa Bahan bakar gas (untuk memasak) Serta pupuk berkualitas tinggi.

Reaktor biogas yang terbuat Dari Bahan polyethylene cocok diterapkan untuk public kecil mengingat murahnya biaya instalasi Serta kemudahan dalam pengoperasian Serta perawatan. Reaktor Penggunaan biogas juga memberikan kontribusi positive bagi Lingkungan (berupa pengurangan polusi gas methana, Bau tidak SEDAP, potensi penyakit, dsb).

Referensi
1. One, BX., Preston, TR., Dolberg, F., The introduction of Low-Cost tube polyethylene Biodigesters on smallholder farmers in Vietnam,
http://www.epa.gov/agstar/resources/ smldigesters.html
2. Aguilar, FX., (2001), How to install a biogas plant polyethylene, the Forum IBSnet electronic Seminar, (The Royal Agricultural College, Cirencester, United Kingdom. 5.23 March 2001), http://www . ias.unu. edu / procedures / icibs / IBS / ibsnet / e-seminar / FranciscoAguilar / index.html
3. Programme support biogas production (BSP), (2003), construction option for Remote Area RABR reactor biogas production, SNV-Nepal
4. Garcelon, J. Clark, J., Design waste digesters, Civil Engineering Laboratory Agenda, University of Florida, http://www.ce.ufl.edu/activities/waste/wddndx.html
5. Karim, K. Hoffmann, R. Klasson, T., Al-Dahhan, MH., (2005), anaerobic digestion of animal waste: Waste force against the impact of mixing, bio-technology, 96, 1771 -1791
6. Moog, FA., Avilla, HF., Agpaoa, EV., Valenzuela, FG., Concepcion, CF., (1997), promotion and use of polyethylene biodigester in small farming systems in the Philippines, l 'Livestock Research for Rural Development, Volume 9, Number 2.
7. Rahman, B. (2005), Biogas Resources Energi Alternatif, Kompas 8 Mei.
8. Raven, RPJM., Gregersen, KH., (2005), biogas plant in Denmark: Successes and setbacks, renewable and sustainable energy customers, the newspaper article
9. Rodriguez, L. Preston, TR., Biodigesteur installation manual, University of Tropical Agriculture Foundation. Finca Ecologica, University of Agriculture and Forestry, Thu Duc, Ho Chi Minh City, Vietnam http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGA/AGAP/
RFA / Recycling / biodig / manual.htm
10. Wikipedia, (2005), http://en.wikipedia.org/wiki/Anaerobic_digester
11. Prometheus, (2005), http://www.prometheus-energy.com/digester.html
12. Intergovernmental Authority on Development (IGAD), biogas digester, http://igadrhep.energyprojects.net/Links/Profiles/
Biogas / Biogas.htm

Yuli Setyo Indartono, mahasiswa doktoral di Graduate School of Science and Technology, Kobe University, Japanese dan Peneliti ISTECS Japan. Email: indartono@yahoo.com

Jatropha oil production



Jatropha oil production

BioDiesel Jatropha oil is extracted from Jatropha oil seeds and the level of Jatropha Oil production also depends on the performance of oilseeds and concentration of oilseeds by Jatropha tree.

The yield of oilseeds of each tree is strongly reflected by type of plant stock. JatrophaTech internally developed using clone technology and the spread of only the highest quality BioDiesel oil-producing Jatropha plants. This technique allows Jatropha nursery affect plant stature and yield.

This objective was achieved through research efforts in the germplasm, genetic manipulation, cloning and methods that allow the propagation of Jatropha superiority genetically identical specimens.

The cloned Jatropha plants provide more oil yields that virtually all other oil seed crop currently available, including rapeseed, soybean, sunflower, mustard and palm oil. What Jatropha particularly interesting to clone is its adaptability to a wide variety of climates and conditions. Jatropha has been grown successfully in dry and sub-humid climates, and very dry to humid tropical climate, at elevations from sea level to 1200 m.

Jatropha trees are tolerant to drought, and can be grown in a variety of soils, Stony clays barren sands. Standard Jatropha trees are usually propagated by seed, requiring 3-4 months to germinate and up to 3 years of growth before the trees bear fruit. Jatropha by cloning we are able to circumvent this process to create genetically compatible, high-yielding trees that can bear fruit after just a few months instead of several years using this platform biotechnology.

Because it can be grown in poor soils and rugged terrain, Jatropha does not need to compete with food crops for land. Jatropha plantations may be located on marginal land that otherwise useless practice. Jatropha transplanting trees can be expected to grow 1-2 m / year to a maximum height of 5-6 m (the size is a need). Once established, the Jatropha trees require very little attention, and can produce more than 50 years. So while the initial cost of inputs May be important, only minimal maintenance costs are required thereafter.

With its many rewards, and the progress made by cloning technology, Jatropha is well placed to become a key element of the profitability of food and biodiesel oil production worldwide.

biodiesel Jatropha



Centre for the promotion of Jatropha

The promotion of agriculture in the future fuel

Rising diesel fuel Plant


Jatropha Centre for Promotion and(CJP) is the Global Agency for authoritative scientific commercialization of Jatropha fuel harvest and designs and implements the cultivation of jatropha curcas crops worldwide in a structured Agriculture and Supply Chain, Value additions of jatropha seeds and research activities on this issue and provides support / services of "Earth to oil" for the development and establishment of the non-food bio-fuel crops.

The CJP has focused on the development of Jatropha curcas and other non-food crops biodiesel. Our primary goal is to discover and develop high yield crops, the most bio-energy per hectare of land. We have recognized and developed new elite varieties of crops optimized feedstock for the production under various agro-climatic conditions, economic and social parameters. We want you to Jatropha and our activities.

We know that energy is an issue of national security, because the volatile Middle East will affect the world supply of most developing countries are struggling with heavy oil import costs. The price for Fossil Crude oil touched $ 100 U.S. per barrel and expected to touch 150 mark within two years. As such, for many countries, the question of trying to create greater energy independence in one day through the development of biofuels has become a "when" and not "if" and, now on a daily basis in the area, a program of biofuels will be launched somewhere in the Third World.

Global production of biofuels is growing steadily and will continue to do so. The global market for biodiesel is estimated to reach 37 billion gallons by 2016 is growing at an average annual rate of 42 percent. The rapid development of global biodiesel industry has been closely monitored by the countries interested in promoting economic growth, improve the environment and reduce dependence on imported oil. Development of biofuels is the most immediate and available response to at least five key challenges and opportunities:

* Dealing with record-high crude oil prices;
* The need for oil-importing countries to reduce their dependence on a limited number of exporting countries by diversifying its energy sources and suppliers;
* The opportunity for the emerging economies in tropical regions to the global energy market with competitively priced liquid biofuels;
* Meet the growing energy demand in developing countries, particularly to support development in rural areas;
* And the commitments to reduce carbon dioxide emissions as part of the fight against climate change

Biofuels offers new opportunities for growth in many rural areas of developing countries, but it is important to guarantee the livelihood and welfare of the most vulnerable. We must ensure that the price of food is not adversely affect the food security of the poor.

Alternative feedstock

The emerging industry is facing a shortage of supplies of raw materials and rising crude palm oil / soya oil prices and the debate of crops for food in comparison to fuel consumption needs and initiatives in production technologies and competitive procurement of suitable feedstock - all that can biofuel economy. As such, the biggest challenges to the widespread introduction and use of biofuels developed a special energy crops, are inexpensive, easy to maintain and may be greater returns. This energy plant that produces biofuels and holds particular promise for sustainable development and a sustainable environment is jatropha and other non-food crops.

Sustainability

Jatropha is a valuable multi-purpose crop to alleviate soil degradation, desertification and deforestation which can be used for bio-energy to replace petro-diesel, for soap production and climatic protection, and therefore deserves special attention

Jatropha can help increase rural incomes, self-sustainability and alleviate poverty among women, the elderly, children and men, tribal communities, small farmers. It can also help to increase income from plantations and agro-industry.

There are several trees that are suitable for bio-diesel production. For all these trees, jatropha must ensure that the reception and the foundation of around a plan can be built, if for nothing but his mere hardship and stress handling. It is only a tree that has enough seats. That is why the Planning Commission of India has nominated it as an ideal plant for biodiesel.

Carbon saving

Biodiesel from Jatropha is one of the most promising solutions for the fight against the production of carbon emissions from transport.





Food versus fuel

Rushing to food crops - corn, wheat, sugar, palm oil - into fuel for cars without first examining the impact on global hunger, would be a recipe for disaster. Commenting on the possible effects identified rising food prices, increasing competition over land and forests, evictions, the impact on employment and working conditions and increasing prices and the lack of water. That is the reason why jatropha has recently been recommended as a biofuel crop for the developing countries of the UN Special Rapporteur on the right to food

In recent years, the Indian government has shown a great interest in jatropha, and alongside other developing countries, a number of international companies are now with this interest. There have been significant political and social pressure to promote the cultivation of crops such as (in particular Jatropha curcas) in India, as a means to strengthen economic, social upliftment and poverty alleviation in marginalized communities.

Government of India, the National Programme for investment in comparison to the other due to the following:

* Low cost seeds
* High oil content
* Small Gestation
* Growth in good and degraded soils
* The growth in the low and high rainfall areas
* Seeds can be harvested in non-rainy season
* Plant size is the collection of seeds convenient

Of all the above-mentioned potential candidate plant as bio-diesel brings sources, Jatropha curcas is "up" and "sufficient" on this system is already available

Breaking the cycle of poverty

onsider that 54 countries are poorer today than 15 years ago. And that almost half the world's people - the vast majority of them working people - live on less than two dollars per day. We have a responsibility, renewable energy available and affordable for all… to ensure that the world's poorest countries are not forced to choose between feeding its population and fuelling their economies.

For example, crop yields in sub-Saharan Africa are projected to fall by 20 percent under the global warming;

Since the yields fall and demand rises, Africa is increasingly dependent on expensive food imports. Already the poor in sub-Saharan Africa spend 60 to 80 percent of their total income on food - compares that to around 10 percent in the United States;

The famine caused Klimawandel May displace more than 250 million people worldwide by 2050
Consider that the oil prices at> $ 90 per barrel has a disproportionate impact on the poorest countries, 38 of which are net importers and 25 from importing all its oil;

Developing countries consume about twice as much oil per dollar of GDP than the U.S.
All during the high cost and inaccessibility of fossil fuels, leaves about 2 billion people worldwide without reliable energy sources, without refrigeration, basic communications, heat or light.

For developing countries, then, climate change and global energy policy are a source of oppression, a source of the disease and a source of human suffering.

As the two-thirds of people in the Third World come their income from agriculture and Jatropha based biodiesel has enormous potential to change their situation for the better and poverty can be distinguished from jatropha cultivation as these cultures has devoted an enormous potential for replication world - wide, improving the livelihoods of many more.

At the level of community that the farmers produce dedicated energy crops can grow their income and growth in their own supply of affordable and reliable energy supply

At the national level, more biofuels produced new industries, new technologies, new jobs and new markets. At the same time, more biofuels produced reducing energy consumption and expenditure enable developing countries to learn more about their resources in health, education and other services for their neediest citizens

Can diesel as a "cultured"?

India and other developing countries have the potential to become one of the world's leading manufacturers of diesel fuel, but the rural farmers still need to be reconciled with the idea that diesel fuel can be "harvested" but they do understand one thing quite clear that they can use Jatropha plants as a source of additional revenue.
Farmers need to know that there will be a good market prospects for what they produce. We are very interested in this trust and to promote the cultivation of jatropha support of planting, the purchase of seeds for refining and the provision of technology to refine so that the producers of their own biodiesel. "

We have the honour to represent the Centre for Jatropha Promotion & biodiesel (CJP), promoting sustainable agriculture for biodiesel production and results of our research and on-hand field experience in relation to the various technical, agricultural science / aspects of silvicultural Of jatropha plantations have resulted in significant improvements in knowledge and technical framework for productivity, profitability and sustainability of commercial production of jatropha oil crop.

After CJP specializes in several areas of jatropha production and related consulting services, we see great opportunities for business with ...

"With the cultivation of the energy producing plants, processing them and finally the production of biodiesel, we are creating new sources of income for farmers in rural areas.

CJP proudly presents its commitment to the exploration, development and establishing the correct process, procedures and systems for cultivation, crushing and refining the use of bio-diesel from seed oil, jatropha curcas in particular.

CJP is fully equipped with technical knowledge and plant sciences know-how, process engineering and operational know-how to plan, design and create fail-fuel plants; deploy commission and non-food vegetable oil refining and design and construction of biodiesel plants

Failsafe fuel farm

CJP provides project management and consulting A / W Jatropha curcas production technology, support, technical know-how, etc. for the establishment of plantations of Ground Zero in the harvest stage only to ensure "Failsafe Jatropha FUEL FARM"

To engineer and lead your Jatropha energy farm of Ground Zero in the harvest stage, we have invented and developed a wide range of products and a number of Jatropha Energy Project (GEP) on the basis of our own knowledge to implement the project by our level of Competence and technology. Our task under the project may cover a wide range of activities, namely: Setting up of plantations of Ground Zero in the harvest stage that pre-feasibility, QPM Nursery operation for elite young plants (seeds) and Plantation process, care and crop management , Installation of equipment for oil extraction and biodiesel production and training, etc.

The starting point in a growing jatropha quest for the production of high quality produce, is choosing the right planting material - seeds or seedlings. The CJP experts working on jatropha plantation have developed superior planting material with standard benchmarks such as SRIPHL-J03 and the best techniques kindergarten for the production of quality seedlings only a proper and profitable production of Jatropha crop

CJP has developed Jatropha agricultural training package to provide skills by qualified trainers with a practical "hands on" approach and has a successful training division provide training to national and international participants through the integration of technical and management issues. Our June'2007 training program was a great success, in which participants from 18 countries Viz: United States, Britain, Spain, Australia, Costa Rica, Nigeria, Malaysia, Indonesia, SIGAPORE, Bangladesh, SRILANKA, Laos, PORTUGAL, INDIA, Ethiopia, HUNDRAS , Thai Country KENYA, etc.

CJP extended sincere thanks to all my colleagues for their participation in the successful training Jatropha June, 2007, and more importantly, their strong contribution to the success of JTP. We are very impressed by their large diversified interest and friendship among colleagues. Overall, the programme was a success. Despite the weather we had good attendance figures so, "Thank you for coming, we do everything for you!

2nd Global Jatropha Hi-tech agricultural training programme

Given the tremendious pressure from visitors from all corners of the world for the holding of the next training session and its growing intrests in the emerging biodiesel industry jatropha in a perfect way the CJP is happy to announce the date of its 2nd World-Wide package HI-TECH training for JCL system. The next 5 days Jatropha agricultural training session is scheduled from
July 14-18,2008 (India)

Save your registration as places are limited today
For complete information and registration, please visit GLOBAL TRAINING pages or e-mail to Director (Training Division): jatrophatraining@gmail.com

CJP also has its new Distance Training (learn) program on Jatropha Biodiesel & Agricultural Hi-tech techniques.
Next »
Contact: --
Centre for Jatropha Promotion & biodiesel
B-132, SAINIK Basti,
CHURU-331001, Rajasthan, India
TELE: +91 1562 255575
MOBILE-+91 9413343550, +91 9829423333

E. Mail: jatropha_c@yahoo.co.in,
jatropha3@hotmail.com, jatrophacurcas@gmail.com

http://www.jatrophaworld.org,
http://www.jatrophabiodiesel.org,

Thursday, June 26, 2008



Mesin Pemecah / Pengupas kulit Ari Kedelai
Written on August 22, 2007 - 11:28 am | by admin |

Kami memproduksi mesin untuk pemecah / pengupas kulit ari kedelai. Mesin pengupa kulit kedelai own ini untuk sangat cocok industrialized pengolahan kedelai

mesin pemecah kulit ari kedelai, mesin pengupas kulit ari kedelai

Spesifikasi mesin pemecah kulit ari kedelai:

  1. * Kapasitas: 10-20 kg / jam
  1. * Power: 0.5 HP

Mesin Pemecah (Pengupas) Kulit Kacang



Mesin Pemecah (Pengupas) Kulit Kacang
Written on August 22, 2007 - 11:32 | by admin |

Kami memproduksi mesin pemecah / pengupas kulit kacang. Mesin pengupas kulit kacang ini untuk sanat cocok industrial pengolahan kacang

Fungsi mesin: memecah (mengupas) kulit kacang

mesin pecah kulit kacang, mesin pecah kulit kacang

Spesifikasi mesin pecah kulit kacang

* Kapasitas: 100 kg / jam
* Power: 5.5 HP
* Dimensi: 75x150 cm × 80

tagmesin kacang mesin pengupas kacang
Related Posts

* Mesin Pemecah / Pengupas Kulit Ari Kedelai
Kami memproduksi mesin untuk pemecah / pengupas kulit ari kedelai. Mesin pengupa kulit ari kedelai i. ..
* Mesin Pemecah (Pengupas) Kemiri
Mesin Pemecah Kemiri Kami memproduksi mesin / ALAT pemecah kemiri. Mesin pemecah kemiri ini Sanga ...
* ALAT / Mesin Pemecah Kemiri
Kami memproduksi mesin / ALAT pemecah kemiri. Mesin pemecah kemiri ini untuk sangat cocok industri ...
* ALAT Pengupas Biji Mete (Kacip Mete)
* Mesin Penyangrai, Mesin Sangrai (Kopi, Kacang, dll)

  • Mesin Perontok (pedal)
  • Kami memproduksi mesin / ALAT perontok PADI, kedelai, dll. ALAT sangat cocok ini untuk para pemberdayaan Petani dan masyarakat Pertanian Indonesia
  • mesin perontok pedal, perontok PADI, perontok kedelai
  • Spesifikasi mesin / ALAT perontok
  • *
  • Kapasitas: 100 kg / jam
  • *
  • Dimension: 80 × 50x125 cm
  • *
  • Sistim kerja: Pedal Manual
  • tagpadi, perontok padi power thresser
  • Related Posts
  • * Mesin Perontok Beroda 3 (Power Thresher Mobile)
  • The Dada.net PADI, jagung, kedelai Fungsi mesin ini untuk merontokkan PADI, jagung, kedelai. Po ...
  • * Mesin Perontok Beroda Multiguna 3 roda (Power Tresher Mobile)
  • Mesin Perontok Beroda Multiguna 3 roda (Power Tresher Mobile) Dada.net-PADI, jagung, kedelai Fu ...
  • * ALAT / Mesin Pemecah Kemiri
  • Kami memproduksi mesin / ALAT pemecah kemiri. Mesin pemecah kemiri ini untuk sangat cocok industri ...
  • * Mesin Pemecah (Pengupas) Kemiri
  • * Mesin Pengemas Sealer plastic pedal (foot-seal)

Saturday, June 21, 2008

High precision, high-pressure syringe pumps



High precision, high-pressure syringe pumps

New app note
Check out our application has recently issued notes describing the use of ISCO syringe pumps in the following applications:

The methane hydrates
Carbon sequestration
Injecting CO2

Pump about anything! Teledyne Isco syringe pumps give you accurate, reliable measurement for an incredible range of applications. You will easily manipulate the viscosity of liquefied gas tar, the flow of sub-microlitre to 400 ml per minute, and pressures to 20000 psi (1380 bar).

Use these rugged, do-nothing pumps solve your most difficult problems of delivery of fluids, micro-circulation and large-scale pilot plant, pumping corrosive liquids, and safe operation in explosive atmospheres with HL series.

• Flooding base
• Food reagent
• The supercritical fluids
• HPLC and Ultra-HPLC
• Alternative Energy - Biomass

Isco programmable multiple interfaces controller pump easily with your system, and offers great versatility with a single pump independent mode, double pump continues to delivery or receive mode, and several of three modes of control pump.

Series D models pump
Six different models from 65 ml to 1 liter capacity and 2000 to 20000 psi

Dual-pump continues Flow Systems
Non-stop pumping with a choice of tyres, electrical or passive valves

Series HL dangerous pumps
Isco intrinsically safe pumps are UL / Demko approved for Class 1, Division 2 and Zone 2 sites

Custom Pumps
Select the special operating modes and options to customize your pump high-precision

JATROPHA CURCAS Plantation







JATROPHA CURCAS Plantation

Time and Place

Jatropha nurseries will have more than 2 years (2006-2008). The mother then worked as a plantation, where seeds fall in demand for the implementation of rare plant.

Jatropha nursery will be carried out in an area of 10 hectares. Stonku or seeds they need for the 10 hectares is 25.000-30-000 stalks, or 15 kg of seeds (to grow the power of> 80%).

Preparing the soil and planting

* Land tillage, to get rid of weeds and soil flatting, which through the drainage side of the tractor and motyčka.



*
Planting time is one to one and a half months before the dry season ends, planting seeds and stalks ready (it is better to namočit seeds in water per day-24 hours).



*
For planting the seeds, it is better to plant the seeds that the holes in the ground and placed in the 1-2 seeds in each hole. If using a stopwatch, the stem is the recommended size of 25-40 cm diameter of 2 cm long, hard stalk, green-light in color.



*
In monoculture planting system, the recommended space is 2 x 2 m, the number of inhabitants per hectare and 2500 plant species. If the seeds, the process continues with sparsing plant where the stem at the age of 2 weeks after planting. If the stems, we can plant the old stem-aged up to 10 cm hole.



*
Clean weeds and grass growth int plantation areas in order to prevent them from competing with Jatropha in mineral water and soil. Cleaning can be done about 2 weeks after planting, or have to depend on the situation on the ground.



* Hnojiv may be given twice planting time as a basic fertilizer and continue fertilizer when plants are in the age of 3-4 weeks. The recommended dose is based on a balanced-mineral system (NPK) Urea: SP-36: KCl = 4: 2: 1
* The planting of each tree Jatropha needs 50 grams of urea, SP-36, and KCl = 2: 2: 1 and 20 g of urea for 3 to 4 weeks.
* Hnojivu is due to the fact that the hole in the ground 5-7 cm deep into the distance at 5-10 cm from the stem to close the hole again.
* Cutting is done when the plants are 90 cm high, which should bring in many stem.
* Harvesting is carried out after the race, have reached the age of 6 months after planted. Ready for harvest feature: fruit color is yellow.
* Harvest the fruit peeled and seeds are dried in the open spot with good sanitation. Good seeds to be processed into oil must be maintained to will contain 12% of the goods.

Jatropha curcas L. manufacturing


Jatropha curcas L. manufacturing


Some with metodhes can be used to extract oil from the fat of the material that presumably in oil or fat are rendering mechanical expression and solvent extraction. The method is suitable to Jatropha seeds mechanical expression.

Two methods are commonly used in Jatropha mechanical expression are hidraulic pressing and expeller pressing. In this project proposal, the chosen method is expeller pressing.

The points of the use of expeller press are as follows:

* The production capacity will be, because the pressing process can be done continuously.
* More time for an efficient, since it is not necessary to ascertain the extent and the warmth of the material.
* More rendemen produced.

Jatropha printing technique using the screw is the most advance technology and widely used in prosessing Jatropha oil industry today. In this way Jatropha seeds are pressed with a screw into continuously. Jatropha seeds are dry can be extracted directly into the screw press. This machine capacity is 100 litres per hour with rendemen level of 25%.

Paddy Dryer

imulointi Continuous flow, Paddy Dryer
18-04-2008:09:15:25


Simulation Continuous flow, Paddy Dryer
Said Wahyu Ferdiansyah, Dr. ir. Bambang Dwi Argo, the DEA.
Abstract

Paddy usually harvested in high humidity (26%). Some new varieties must be dried, because there is a brief density of the germination and growth of a few days after the date of the density of harvest. Paddy usually kept safely in 2-3 months at 12-13% humidity wet, keep it up until 3 months; paddy must be maintained until such time as 12-12.5% wet basis (Wimberly, 1983).
The existing mathematic model can be plant grain dryer design of the machine. From the model can be predicted about the machine dimension, capacity and the dryer time, the dryer temperature and the requirement of thermal energy. From the model can be predicted about the distribution of temperature and humidity, the layer of dried substance, it makes reference easier dryer control of the machine, so the minimization of mount material damage.
The goal was the result of 1) develop a mathematic model and finishing, the paddy fields Dyer continuous flow, and 2) to establish a computer-simulation program paddy Dyer continuous flow. The model developed for Dyer to make energy audit and the density of volume control. There are four variables, which had been fixed for the model, which had an average of the substance, M, the absolute humidity, W, dryer temperature, T, and the temperature of the substance ï ±.
Borland Delphi 4.0 fasility, Windows 98 Intel Pentium MMX 233 MHz and RAM 32 MB procesor was the use, so that the simulation program. The test program simulation done givenly of inputs are in substance the medium speed of paddy fields and 1.0 m / h, with a special heat substance 1100 J / kg ° C, the specific substance in a broad 2361 m2/m3, the original humidity of 30% wet, the original substance as the temperature of 28 oC, Special agent 708 kg/m3, the dryer the temperature of 43.3 ° C, the thick layer of a substance 0.30 m, tinggi lapisan 2 m, air velocity 900 m / h, the heat air specifik 1055 J / kg ° C, the temperature, the dry bulb temperature is 30 ° C The wet at a temperature of the temperature of 25 oC, specifik the air density of 1.17 kg/m3, humidity heat spesifik 4187 J / kg ° C, specifik heat of vapor 1850 J / kg ° C, the diameter of luar mess 0.4 m, Jenis bahan bakar minyak tanah dengan Potchefstroom calories 48004.14 kJ / kg, efisiensi pemanas to 50%. Data pengeringan yang dihasilkan program simulasi dengan metode langsung dari information Masuk Adalah: Kadar air akhir 14.4% bk laju bahan 466.86 kg / jam, laju udara 2645.14 kg / jam, vapor velocity 42.29 kg of air vapor / h , Dyer time of 2 hours, the heat 145489.48 kJ / h, the fuel requirement of 6062 kg / h, the plenum a diameter of 0.4 m. Hasil simulasi dengan metode Syndication untuk Kadar air bahan menunjukkan adanya var Kadar air pada lapisan Dalam this lapisan terluar, yaitu: 11.26 â € "17.85% bk

1. Back to the ground,
Paddy usually harvested in a high moisture content, until 26% wet basis (Wb), and will be quickly destroyed if stored in wet bulb. Paddy moisture can save on the basis of keeping the grain condition, climate, and must be maintained. As a general rule, paddy fields can be kept for at least 2 â € "3 per month for 13-14% of moisture on wet basis. Paddy has been dried until 12-12.5% wet basis to keep 3 months. Some new varieties must be dried because they are short germination and growth in a few days after harvest. (Wimberley, 1983).
Behavior drying one of the seeds or seeds of a group dryer machine, the basis for seed physical nature of Biji dianggap sebagai produk yang bersifat porous dengan kapiler higroskopis, Toronto-Pori Deputy Minister sebagian oleh cairan the air transport sector, Deputy Minister sebagian oleh campuran UAP air surface udara. Selami process pengeringan, Kadar air diuapkan pada permukaan biji dan / atau dalam Pasig-Pori sub-meninggalkan biji dengan tekanan UAP parsial berbeda antara biji dengan udara sekitar. Laju kehilangan Kadar air biji-bijian di bawah kondisi pengeringan, Adalah prinsip dari pemodelan pengeringan padi tipe kontinyu aliran silang dalam would ini.
Model mathematical yang force the fury of memudahkan dalam perancangan mess pengering biji-bijian. Dari model tersebut the fury of diprediksi tentang dime mess, kapasitas, waktu pengeringan, Suhu pengeringan, kebutuhan energi panas this tenaga yang dibutuhkan. Dari model juga diketahui the fury of the distribution of this Suhu Kadar air dalam lapisan bahan yang dikeringkan, hal tersebut akan mempermudah dalam pengontrolan mess pengering, sehingga meminimalkan tingkat kerusakan bahan.
Penelitian ini bertujuan untuk Mengembangkan mathematical model of this penyelesaiannya untuk pengeringan padi tipe kontinyu aliran silang, this membuat program simulasi komputer untuk pengeringan padi tipe kontinyu aliran silang. Hasil penelitian ini diharapkan the fury of memberikan manfaat yaitu mendapatkan information techno tentang process pengeringan padi, pada pengeringan padi tipe kontinyu aliran silang sebagai pertimbangan penelitian selanjutnya.
Penelitian ini dilakukan sampai pada pembuatan mathematical model of this penyelesaiannya untuk Syndication Suhu udara pengeringan pada lapisan padi, the distribution by kelembaban mutlak udara pengering, the distribution by Suhu bahan pada lapisan, the distribution of this Kadar air padi pada lapisan, ser pembuatan program simulasi komputer untuk pengeringan padi tipe kontinyu aliran silang dengan menggunakan fasilitas Borland Delphi 4.0.
Djoni Bustan, Ilmuwan Sumsel Penemu Biofuel Dari CPO
Jumat, 23 Mei 2008 - by: bankominfo

"Berharap Dukungan Kebijakan Pemerintah"

Berangkat Dari keprihatinan kian minimnya persediaan sumber bahan di bakar tanah air, ditambah kemampuan akademisnya yang sangat mumpuni. Dr. Ir Djoni Bustan, M. Eng (50), pengajar Program Pasca di Sarjana Fakultas Tehnik Universitas Sriwijaya Palembang ini menciptakan bahan bakar Dari berbagai bahan mulai Dari Dari crude palm oil (CPO), batubara, minyak jarak sampai ampas tebu. Walaupun belum dinikmati masyaratakat, namun buah Dari kegigihannya tersebut kian mendekati Harapan. Khairul Saleh Berikut laporan yang mendatangi kantornya di kawasan Bukit Besar Palembang, belum Lama ini.
***

Selain memiliki kualitas yang lebih baik di banding yang sudah ada di pasaran. Temuan prayed berpenampilan kalem ini juga memiliki berbagai keunggulan yakni bhan bakar dihasilkannya seperti yang biogasoline, biokerosin biodiesel dan yang diproses oleh tiga reaktor dan mampu merubah trigliserida menjadi senyawa paraffin, olefin, naftene dan aromatik (PONA).

Umumnya bahan bakar diesel Dari baku bahan yang ada memakai prose transesterifikasi yang menghasilkan metil ester dan tidak hasilnya siap pakai (perlu campuran) sehingga hasil senyawa fisiknya tidak mirip dengan bahan di bakar diesel pasaran, maka lain halnya dengan hasil temuan suami Dari Sri Haryati ini yang juga pengajar Program Pasca di Sarjana Fakultas Tehnik Universitas Sriwijaya.


"Hasil ini kita siap pakai, karena mesin yang dipakai untuk memproses mampu mengubah CPO menjadi PONA. Minyak diodisel pun dihasilkan yang mempunyai aromatik octan number dan lebih tinggi Dari yanga ada di pasaran (milik Pertamina). Kualitasnya pun lebih baik, "ujar Djoni Bustan.

Untuk mengolah bahan bakar Dari CPO harus alat pengolah khusus dengan yang terdiri atas dua jenis. Pertama alat mengolah CPO yang menjadi pengganti solar dan bensin serta pengolahannya menjadi pengganti minyak tanah dengan peralatan sederhana ayng dicuptakannya berupa tungku pemanas, pipa, reaktor dan yang berbahan dasar stainless steel.

Untu memprosesnya. Pertama, CPO dimasukkan ke dalam reaktor pemanas listrik dengan panas 60 derajat Celsius, selama 60 menit sceara kontinyu dan yang kelak menghasilkan cairan senyawa alkana dengaa unsur mendekati solar. Cairan senyawa alkana kemudian dimurnikan melalui prose destilasi dan adsorpsi sehingga menghasilkan biodiesel minyak yang yang sudah bisa digunakan sebagai bahan bakar tanpa harus dicampur dengan solar.

"Cairan senyawa alkana tersebut juga masih bisa diproses menjadi bensin dengan memakai reaktor biogasolin melalui prose reaksi. Untuk 20 liter CPO bisa diolah menjadi bahan bakar setara 16 liter bensin, "ujar prayed yang memegang filosofi menyederhanakan hal Sulit.

Sementara alat pengolah CPO menjadi minyak tanah terdiri atas tangki pengaduk, reaktor dekarbosilaksi, dan reaktor kerosin berbahan dasar stainless steel. Pengolahannya sendiri dengan suhu di bawah 150 derajat Celsius. Sementara alat penghasil bensin berbahan baku ampas tebu dengan memakai teknik dimerisasi (penggabungan metanol) sehingga bubuk ampas diolah menjadi metanol (CH3OH).

Bahan bakar Dari ampas tebu CPO dan ini yang menurutnya Djoni kerap mengeluarkan koceknya sendiri untuk penelitiannya sangat cocok dikembangkan menjadi industri kecil di pedesaan, karena selain juga akan taraf ekonomi mampu menyerap tenaga kerja dan mendorong usaha perkebunan. Hanya saja ketersediaan bahan baku menjadi kendala karena tebu sendiri di Sumsel on melimpah dan hanya belum ada PTPN VII Ketiau, Ogan Ilir sepanjang tahun yang tidak panen.

"Kondisi demikian belum memungkinkan untuk dijadikan industri massal rumah tangga," ketusnya.

Batubara yang cukup melimpah di Sumsel dan hanya dimanfaatkan untuk bahan baku pembangkit listrik tenaga uap (PLTU) dalam kreasi Djoni Bustan bisa lebih bermanfaat lewat penciptaan reaktor osilasi dengan gelombang elektromagnetik (electromagnetic oscillated liquefied coal reactor). Batubara berpotensi menjadi bahan bakar minyak. Bedanya hanya berat molekul batu bara lebih tinggi, sedangkan kandungan hidrogennya lebih rendah daripada minyak bumi.

Metode ini dengan bisa dilakukan alat sederhana kurang Dari 45 menit dengan suhu di bawah 200 derajat Celsius. Proses ini dipandang efektif karena listrik yang dipergunkana hanya delapan volt dengan pelarut tanpa katalis dan yang berfungsi menyederhanakan struktur kimia batu bara yang panjang. menjadi pendek mendekati struktur kimia minyak bumi. Proses itu akan berfungsi ganda. Pertama berat molekul batu bara akan berkurang sehingga bisa larut dalam pelarut, sementara hidrogennya ditingkatkan agar struktur kimia batu bara lebih pendek.

"Hasilnya, batu bara terbentuk menjadi minyak mentah yang pengolahan lanjutan di dalam kilang minyak bisa menghasilkan bensin, kerosin, dan solar, 'terangnya.

***

Temuannya Djoni Bustan ini memang langka, karena memang belum banyak pakar dia seperti yang mampu menghasilkan biodisesel Dari berbagai bahan baku. Kalau pun ada biasanya Dari CPO saja.

Diakuinya Dari sisi ekonomis belum terlihat jelas karena temuannya memang belum memasuki tahap demo plant, sementara saat ini baru tahap pilot plant setelah sebelumnya tahap skala laboratorium. Dengan kata lain, dan secara kualitas teknologi temuannya ini sudah bisa dilihat namun belum secara ekonomis. Nah. Untuk sampai pada tahan demo plant inilah katanya di terkendala karena membutuhkan dana tidak sedikit. Jika tahap demo plant usai barulah diproduksi secara massal bisa dilakukan. Tetapi di sinilah biang masalahnya,


Beberapa investor memang sudah ada tertarik, belum mampunya pemerintah dan asosiasi menjaga kestabilan harga CPO di dalam negeri membuat mereka mengurungkan niatnya, paling atau tidak menundanya.

"Jika pemerintah baik pusat ataupun daerah bisa dan membuat kebijakan atau terobosan sehingga harga CPO stabil, maka baru bisa diproduksi massal. Saya optimistic harga energi terbarukan yang ini nantinya bisa bersaing secara kompetitif, "tutur Djoni Bustan sembari menambahkan prose pembuatannya sendiri mudah dipelajari.
Jika kelak sudah merambah pasar, katanya biofuel bisa ini menjadi penyanggah persediaan bakar bahan yang berarti bisa mewujudkan keinginan banga ini untuk mandiri dalam bidang energi hal yang bukan mustahil.

"Dari sisi manejemen biofuel ini sebaiknya diproduksi di pedesaan dengan yang dekat baku lalu disuplai ke kota," demikian Djoni Bustan.

Disadarinya Harapan adanya kebijakan tersebut Sulit adanya karena peraturan Dari pemerintah pusat belum memungkinkannya terwujud. Namun menurutnya masih ada peluang lain asalkan pemerintah daerah berani melakukan terobosan dan kebijakan, seperti mewajibkan perusahaan perkebunan sawit membuat pabrik pengolahan bahan bakar Dari CPO secara terintegrasi dengan areal perkebunan.

"Kalau ini terjadi, maka selain termanfaatkannya berbagai barang terbuang Dari perkebunan, kebutuhan lokal atas BBM dipenuhi Dari hasil kegiatan ini. Ketergantungan BBM Dari bahan konvensionalpun bisa dikurangi. Tapi kapankah ini terjadi ..?," ujar Djoni Bustan menerawang.


Tabel Perbandingan:

Perbandingan Karakteristik Minyak Tanah Pertamina dengan Top Produk Biokerosin
No PROPERTIES SATUAN METHOD PERTAMINA BIOKORESIN
1. Specific Gravity at 60/50-F - ASTM-1298 0835 0.8554
2. Colour ASTM - ASTM D-1500 2.50 3.0
3. Flash Points Able F --- IP-70 100 113
4. API Gravity - 37.9611 33.9197
5. Net Heating Value (NHV) Btu / ib 18.461,7595 18.359,1942


Perbandingan Karakteristik Solaa Pertamina dengan Produk Biodiesel
No PROPERTIES SATUAN METHOD PERTAMINA BIODIESEL
1. Specific Gravity at 60/50-F - ASTM D-1298 0840-0920 0.9107
2. Colour ASTM - ASTM D-1298 6 3.5
3. Flash Points Able F --- IP-70 150 185
4. Cetane Index - 48 27.8
5. Net Heating Value (NHV) Btu / ib 19,140 17,995

]
Perbandingan Karakteristik Bensin Pertamina dengan Produk Top Produk
No PROPERTIES SATUAN METHOD PERTAMINA TOP PRODUK
1. Specific Gravity at 60/50-F - ASTM D-1298 0746 `0.7433
2. API Gravity at 60/60-F - ASTM D-1298 57.7 58.8672
3. Distilation
Initial Boiling Point
10% Theft recovered
20% Theft recovered
30% Theft recovered
40% Theft recovered
50% Theft recovered
60% Theft recovered
70% Theft recovered
80% Theft recovered
90% Theft recovered
Final Boiling Point
Loss
Residue
0 Celsius
0 Celsius
0 Celsius
0 Celsius
0 Celsius
0 Celsius
0 Celsius
0 Celsius
ASTM-86
36
40
4. PONA Analisi
Parafin (% W)
Naftena (% W)
Olefin (% W)
Aromatik (% W) - RON
55.5

0.5
44.0
39.6
38.0
0.55
15.0
5. Octane Number 88 90

Wednesday, June 18, 2008

President Terima Tim Blue Energy

enin, 03 December 2007 20:03:00
President Terima Tim Blue Energy

Nusa Dua-Role - President Susilo Bambang Yudhoyono menerima Tim Blue Energy yang telah melakukan perjalanan darat Jakarta-Denpasar sepanjang 1.225,7 km dengan lima kendaraan berbahan Bakar energi ALTERNATIF "blue energy".

Usai bertemu chairman di Hotel Nikko, Nusa Dua, Bali, Senin, Ketua Tim Blue Energy Heru Lelono mengatakan, setelah melakukan perjalanan tersebut, kelima kendaraan telah dilakukan di uji emisí bengkel than hasilnya cukup baik.

Bahan Bakar blue Bakar bahan yang merupakan energy dihasilkan dari bahan Baku hidrogen than Carbon, sama sekali tidak bersumber dari bahan fosil. Kelima kendaraan berbahan Bakar "blue energy" itu adalah Dua mobil 2500 CC Ford, ISUZU Panther 2500 CC diesel, petrol dengan 1997 Mazda sedan 1800 CC, serta bus Mitsubishi 4000 CC.

Sebelumnya, President Yudhoyono di di kediamannya Indah Puri Cikeas Bogor, pada 25 november 2007 lalu, telah melepas kelima kendaraan tersebut untuk melakukan uji coba dengan menggunakan bahan Bakar "blue energy". "Kita ingin membuktikan Indonesia Juga mampu mencari jawaban terhadap masalah yang dibutuhkan khususnya soal bahan Bakar dari not fosil," Heru kata.

Heru mengatakan, bahan Bakar tersebut lebih tepat dikatakan sebagai bahan yang sintetik Bakar proses pembuatannya tidak perlu memakan waktu ratusan tahun seperti fosil. Tetapi dilakukan dengan mesin yang lebih Cepat berhasil diciptakan Tim Blue Energy. "Ini tidak merusak lingkungan, emisinya Juga Ramah lingkungan. Tahun depan Kita akan mulai memproduksi bahan Bakar ini. Masyarakat pengguna perlu tidak lagi memodifikasi kendaraannya," katanya.

Penggunaan bahan Bakar tersebut, katanya, cukup Irit yakni 1 litre blue energy mampu untuk menempuh jarak sekitar 15.13 km. Namun demikian, Heru Lelono belum BISA menyebut biaya produksi untuk bahan Bakar blue energy tersebut. "Ini harus BISA masuk Sistem. Setelah itu Baru BISA dijawab ongkos produksi sebenarnya," katanya.

Sementara itu Juru Bicara Kepresidenan Andi Mallarangeng mengatakan, President Yudhoyono menyambut baik upaya anak bangsa yang mampu menghasilkan energi ALTERNATIF Baru yang not fosil. "President mendukung upaya semacam ini yang diharapkan BISA diproduksi dalam skala Besar untuk memenuhi kebutuhan energi," katanya. Antara / MIM

Blue Energy Technology








Blue Energy Technology

The Blue Ocean Energy turbine acts as a highly efficient underwater vertical axis windmill and has a number of remarkable benefits conferred upon it by the following fundamental science: Sea water is 832 times more dense than air, and it is a non-compressible medium , So an 8-knot tidal current operation offers the equivalent of a 390 km / hour winds (about). Designed by engineer Aeronautics and Space veteran Barry Davis, the Blue Energy vertical axis turbine is two decades of Canadian research and development. Four fixed hydrofoil blades of the turbine connected to a rotor that drives an integrated gearbox and the electric generator assembly. The turbine is mounted on a sustainable marine caisson concrete anchors that the unity of the ocean floor, leads flow through the turbine further concentration of resources to support the clutch, gearbox and the generator above. These are above the surface of the water and are easily accessible for maintenance and repair. The hydrofoil knives use of a hydrodynamic lift main reasons that the turbine foils to move relatively faster than the speed of the surrounding water. Computer optimized cross-flow design ensures that the rotation of the turbine is unidirectional on both the ebb and flow of the tide.

The design of the Blue Ocean Energy Turbine requires no new construction method, it is structurally and mechanically simple. The transmission and electrical systems are similar to thousands of existing hydropower. Power transmission is by submersible kV DC wiring and safely buried in the ocean sediments with power points for the coastal cities and connections to the mainland power grid. A standardized high production design makes the economic system to build, install and maintain.

The Blue Ocean Energy Turbine can be classified into four different and flexible platforms:



Micro Power System - This is a 5 to 25kW meeting for the department in the remote domestic consumers.



Midrange Power System - Through two 250kW Blue Ocean Energy turbines, the device is off-grid competitive initially, and just competition within three to four years time. Suitable for use in remote communities, industrial areas, and resorts in regions with a net-metering policy or its dependence on costly and polluting diesel generation.



Blue Energy Power System - for large-scale electricity production, multiple turbines connected in series for making a fence in a tidal inlet or ocean passage. These are large-scale, location-specific, tailor-fitted energy installations, which vary in size and production on location. These structures have the added advantage as a transportation solution.



Mega Power System - A scale-up version of the Blue Power Energy System, the mega-class is a tidal fence can produce thousands of megawatts of power. This prediction fences can be many kilometers long and can operate in depths up to 70 meters.

To date, six prototypes of the turbine constructed and tested under the auspices of the National Research Council of Canada and independent assessments have verified feasibility.

Blue Energy

Blue Energy International has announced the appointment of Paul Gill to the Advisory Team

May 15, 2008

Blue Energy International is pleased to announce the appointment of Mr. Paul Gill, P. Eng.; Chair BC Section American Society Mechanical Engineers 2007-08, when the company adviser, with immediate effect.

Paul Gill is currently CEO Gill advanced technologies, specializing as a consulting engineer in the global business development of sustainable energy projects, corrosion analysis and the ship's mechanical systems. Paul has also been involved in expert systems design for the shipyard management, the large amount of gas purifications systems development of hydrogen-oriented systems, he has consulted on the applications of technology to energy storage / water issues, and he worked as Lead Mechanical Engineer at the MRT where he focused on the rapid commercialization of new technologies.

Paul is a graduate of Mechanical Engineering, University of British Columbia and also holds a second degree in mechanical engineering from Punjab University in 1989.

In 2006, Paul was nominated for Bharat Gaurav Award, and he has great interest in joint ventures for India and Canada. Paul is passionate about uses of technology innovation in creating a sustainable future for coming generations.

"Paul is an excellent addition to our advisory team," said Jon Ellison, Blue Energy CEO. "He has great international experience and is already some important support to the company."

Saturday, June 14, 2008

pembuatan mesin vacuum frying



Wrote on September 19, 2007-5: 27 am | From a dmin |

Kami melayani pembuatan mesin vacuum frying. Kami vacuum frying Dali mesin 10 tahun telah teruji the licensing agreement. Paris Hilton telah memproduksi mesin hair vacuum frying Dan Yang Shu seluruh Indonesia kirim paper mancanegara

tersedia kapasitas 1,5 km and 3.5 km, 5 km, 10 km

Dunn Foundation means buah keripik sayur (keripik nangka, keripik nanas, keripik mangga, keripik melon, keripik pepaya, keripik SARAKU, kripik pepaya, kripik wortel, DLL) to

Vacuum frying mesin, vacuum Fryer, penggoreng vakum

Your keunggulan mesin

* Telah terbukti handal produksi dalam keripik buah Dan kripik sayur, dengan hasil memuaskan
* Mesin terbukti awet, hingga bertahun - tahun
* Perawatan mesin mudah
* Risk cadang mudah dicari / dibuat sendiri
* Proses pembuatan / perakitan mesin di bengkel share memakan waktu Kami Lama (Hari 15 -3 5). When Anda are free to share perlu menunggu waktu Yang Lama.
* Bahan full stainless steel
* Telah making Paris Hilton mesin, Dan Album dikirim various daerah DIINDONESHIA
* Dinas pemerintah telah dipakai Paris Hilton resort pemberdayaan masyarakat

Penjelasan mesin vacuum frying

Mesin atau mesin penggoreng hampa vacuum frying Foundation means adalah aneka keripik mesin sayur dengan buah Dan sistim vakum.

Your dengan mesin, Anda Foundation valid keripik mangga, keripik melon, keripik nanas, keripik nangka, keripik pepaya, keripik SARAKUDANREIN - Rain
Yang Dan buah sayur effective dengan mesin digoreng vacuum frying

Yang Dan beberapa buah sayur effective digoreng dengan mesin vacuum frying (penggoreng hampa) menjadi keripik Antara Rain: nanas, apel, SARAKU, nangka, pepaya, melon, mangga, pisang, wortel, waluh, apel, terung, labu Siam, buncis, kacang panjang, mentimun, jamur tiram, DLL spesifikasi mesin vacuum frying sistim Air jet

uraian


Model 1


Model 2
kapasitas (kg masukan / proses) 5 〜 6 kg 8-10 kg
Lama proses (menit) 55-75 55-75
Horizontal type horizontal
bahan Bakar of the LPG otomatis dengan suhu Distribution) of the LPG otomatis dengan suhu Distribution)
Sirkulai air air pendingin sirkulai
Volume minyak goreng (liters) 52 l 70 to 80 liters
kebutuhan of LPG (kg / jam) 0.2-0.3 0.30-0.35
kebutuhan deception (Watts) 0,75 -1 HP (6 00 from 750 watts) 2 hp (1 500 watts)
Minimum instalasi listrik rumah 1300 watt/220v 2200 watt/220v
182 x 122 x dimensi Park air 65 cm 182 x 122 x 65 cm
dimensi total of 182 × 125 × 125 cm 182 x 130 x 135 cm

Sheeler kelengkapan kemasan, pengaktus minyak (spinner), TSURUKITTOSHIRA kemasan, pengaktus minyak (spiner), tool kits,
garansi (bulan) 1 times once

Mesin Soft Ice Cream dan Mesin Hard Ice Cream




Mesin Soft Ice Cream dan Mesin Hard Ice Cream

mesin es krim soft ice mesin hard ice cream, mesin es krim hard

mesin es krim DIGITAL


mesin es krim DIGITAL

Cara mudah memulai bisnis ES KRIM, dengan mesin pembuat es krim SIAP PAKAI

mesin es krim, soft ice cream, hard ice cream

Peluang Bisnis Es Krim Sangat Menjanjikan

Sebagaimana halnya bisnis makanan pada umumnya, peluang bisnis es krim sangat menjanjikan. Beberapa alasan mengapa bisnis es krim begitu menggiurkan antara lain:

* Iklim Indonesia yang tropis, sangat mendukung bisnis es krim

* Es krim sangat disukai oleh semua kalangan, mulai anak-anak hingga orang tua

* Pasar bisnis es krim mudah dicari. Cukup dengan mencari tempat ramai, maka bisnis es krim Anda akan sukses

* Bisnis es krim mudah dimulai dan dijalankan. Untuk memulai bisnis es krim, Anda hanya cukup memiliki mesin es krim.

* Tidak dibutuhkan banyak karyawan. Pengoperasian bisnis es krim bisa dilakukan 1 orang

* Proses pembuatan cepat, dan bisa diatur. Untuk memproduksi es krim, tidak dibutuhkan waktu lama. Dan Andapun bisa mengatur jumlah produksi.

Kami tawarkan ...

Mesin Pembuat Es Krim SOFT dan Mesin Pembuat Es Krim HARD (Es Putar / Es Puter)

mesin es krim soft ice

Mesin Es Krim (Soft)

DETAIL, KLIK DISINI

mesin hard ice cream, mesin es krim hard

Mesin Es Krim (Hard)

Water Treatment Technology

Water Treatment Technology
Rabu, 6 februari 2008 00:37:02 - oleh: admin

Teknik ultrafiltrasi yang dikombinasikan dengan Reverse Osmosis (RO) termasuk technology baru dibandingkan proses filtrasi lainnya. Pada proses ini digunakan membran yang bersifat semipermeabel untuk memisahkan lentoliikenteen dengan pengotornya. Materiaali membran yang digunakan bisa berasal dari materi organik (polimer) ataupun AN-organik (keramik, gelas, dll). Air dilewatkan melalui membran tämän meninggalkan partikel pengotor yang tertahan di SiSi membran lainnya. Proses-proses membran yang umum adalah mikrofiltrasi (MF), ultrafiltrasi (UF), nanofiltrasi (NF) tämän käänteisen osmosis (RO). Pada proses-proses membran ini pemisahan terjadi karena adanya perbedaan tekanan antara ruang berisi umpan (lento-yang hendak diolah) tämän SiSi membran. Pada MF, UF, tämän NF membran yang digunakan adalah membran berpori dimana Pori membran terbesar hingga terkecil berturut-turut adalah MF, UF, lalu NF. Pada proses RO digunakan membran yang tidak berpori sehingga pemisahan yang terjadi tidak melalui Pori seperti proses lainnya tetapi berdasarkan kemampuan lentoliikenteen melarut pada membran. Air yang dihasilkan dari proses RO jauh lebih murni dari lentoliikenteen yang dihasilkan proses MF, UF, tämän NF karena proses RO mampu memisahkan pengotor hingga tasolla ion.

Crusher Machine (GILING / PENCACAH Plastik)




Crusher Machine (GILING / PENCACAH Plastik)

Messina untuk menggiling / mencacah plastic. Bisan untuk giling kering this giling Basah / cuci. Tersedia berbagai type dan kapasitas. Untuk lebih jelasnya kunjungi http://agungmesindo.250free.comatau http://agungmesindo-plastik.tripod.com

Negara Asal: China
Harga: Nego
Jumlah: --
Kemas & Pengiriman: --

More wed Keranjang atau Permintaan Penawaran
Permintaan Anda akan disimpan in "Surat Bisnis".

CNC milling machine



CNC milling machine
(Gambar)
Doosan CNC milling machine
-- 5 MB
-- MB 7 / 8

Negara Asal: Korea Selatan

Tambah ke Keranjang atau Permintaan Penawaran
Permintaan Anda akan disimpan di "Surat Company."

COFFEE ROASTER



COFFEE ROASTER ( SANGRAI KOPI TERBARU)
NEW COFFEE ROASTER (Tool SANGRAI KOPI TERBARU)
(Gambar)
KAMI MEMPRODUKSI Tool-Tool ATAU MESIN REKAYASA UNTUK KEPERLUAN INDUSTRI MENENGAH MAUPUN KECIL.
SAAT INI KAMI SUDAH MENEMUKAN SUATU SYSTEM BARU DALAM PROSES SANGRAI BIJI KOPI DAN SUDAH KAMI PATEN-KAN. SYSTEM SANGRAI KOPI YANG KIAMI MILIKI MEMILIKI KELEBIHAN:
1. MUDAH
2. BISA DENGAN GERBAGAI MACAN JENIS PENGAPIAN
3. KOPI MASUK DINGIN, KELUAR MATANG & DINGIN
4. MATANG MERATA
5. TINGKAT KERUSAKAN (HANGUS) KURANG DARI 2%
6 KOPI TERLIHAT LEBIH MENGKILAT DAN HARUM
7. MURAH
8. SUDAH DIPATENKAN

Negara Asal: Indonesia
Harga: --
Jumlah: BY ORDER
Kemas & Pengiriman: --

3 Ball Valve Body Parts



3 Ball Valve Body Parts
3 Ball Valve Body Parts
(Gambar)
3 Ball Valve Body Parts
Connection: BSP Woman Fil (ulir); note: other connections on demand, for example: the NPT, Socket Weld, Butt Weld
Size: 1 / 2 ", 3 / 4", 1, 1 1 / 4 ", 1 1 / 2" 2 ", note: bigger until 3" on request
Body Material: stainless steel 316
Pressure range: 0 ~ 64 bar (1.000 psi)
The temperature:-10degC ~ +120 degC; note: higher temperatures on request


Tambah ke Keranjang atau Permintaan Penawaran
Permintaan Anda akan disimpan di "Surat Company."

Sunday, June 8, 2008

Biofuel Bukan Solusi Perubahan Iklim

Biofuel Bukan Solusi Perubahan Iklim PDF

By E Haryadi, on 08-12-2007 10:27

Published in : COP 13, Artikel

Sawit Watch pagi ini menegaskan, biofuel bukan solusi perubahan iklim. Perbincangan biofuel sebagai energi alternatif di Konferensi PBB untuk Perubahan Iklim (UNFCCC), sebenarnya lebih dipicu kenaikan harga minyak bumi yang membuat ongkos produksi meningkat.


“Biofuel bukan solusi perubahan iklim. Biofuel hanyalah solusi pragmatis dunia industri terhadap kelangkaan energi fosil saat ini,” kata Deputi Direktur Sawit Watch Abet Nego Tarigan saat ditemui Sabtu (8/12) di Kampung Civil Society Forum (CSF) di BTDC Park, Nusa Dua, Bali.

Menurut Abet, biofuel sekarang merupakan bahan bakar yang seksi. Padahal biofuel sudah diperkenalkan sejak tahun 1980-an. Tapi biofuel baru mengalami lonjakan permintaan secara dramatis sejak tahun 2006 setelah harga minyak bumi hampir menyentuh 100 dolar AS. Dan kini biofuel menjadi wacana energi alternatif dalam UNFCCC.

Di Amerika Serikat misalnya, karena mahalnya harga energi fosil, sekarang permintaan atas etanol yang terbuat dari jagung dan tebu, jadi melonjak. Begitu pula dengan permintaan biosolar yang dihasilkan dari kebun kelapa sawit dalam bentuk crude palm oil (CPO)

Lahan dan Pangan
Karena itu Sawit Watch menilai biofuel memicu pertarungan antara kebutuhan komsumsi dan energi.

Seiring dengan kenaikan permintaan bahan baku biofuel, para pengusaha sekarang terangsang melakukan pembukaan hutan (deforestisasi). Termasuk juga melakukan konversi lahan pertanian menjadi perkebunan.

“Jelas, para pengusaha tak punya loyalitas pada kebutuhan pangan atau lingkungan. Mereka hanya berpikir soal keuntungan,” terangnya.

Abet memberi contoh hasil minyak sawit curah (CPO) yang dihasilkan Indonesia. Setiap tahun Indonesia menghasilkan 15 ton CPO. Namun dari jumlah itu, hanya 4 ton yang digunakan untuk komsumsi. “Sisanya sebanyak 11 ton diekspor ke luar negeri,” ujarnya.

Akibatnya, jelas Abet, terjadi kelangkaan minyak goreng. Ini merupakan sebuah fakta ironis karena pembukaan perkebunan kelapa sawit secara massif masih terus berjalan di Indonesia.

Dengan demikian, Sawit Watch berani menyatakan biofuel bukan solusi bagi perubahan iklim. Jalan satu-satunya untuk perubahan iklim hanyalah negara-negara maju mau mengurangi komsumsi pemakaian energi.

“Cuma lewat keadilan iklim, pemanasan suhu bumi akibat gas rumah kaca bisa dihentikan,” tandasnya.

Jatropha production of biofuels in Sumba, East Nusa Tenggara


Miracle solution or imminent disaster? Print E-mail
Jatropha production of biofuels in Sumba, East Nusa Tenggara

Jacqueline Vel
vel1.jpg
The sign indicates the plans for the production of biodiesel, but there is behind us
only one hectare demonstration plot in poor condition.
J. Vel

With the whole world attention to global warming and the extremely high prices of fossil fuels, interest in alternative energy is booming. The European Union has targeted 5.75 percent of the market share for fossil fuels mixed with biofuels in 2010. In anticipation of more advanced techniques are developed, biofuel is now on large parts of the country, both in Western countries and increasingly in developing countries. Indonesia is one of the relatively new biofuel-producing countries. The national government aims to increase the share of biofuels in the domestic fuel consumption and to increase production for export. Oliepalmplantages, sugar cane, cassava and jatropha (known by Indonesians as jarak pagar) are the four priority crops in Indonesia for the production of biofuels.

International companies are lining up to invest in new plantations. Meanwhile, the growing criticism. What will the impact on the environment? What will happen with people of the land rights? Biofuel will endanger the food? How will the benefits of this booming business are distributed within the value chains, which runs from western companies invest in Indonesia to the farmers in marginal areas?

Jatropha can be grown on marginal lands. Sumba is full of "marginal land", but they are not 'empty'

Organizations such as Sawit Watch have criticised by oil palm firmly in the public debate. Compared with palm oil, jatropha seems a miracle that crop - according to optimistic websites such as those of the Centre for Jatropha Promotion and biodiesel (in India) (http://www.jatrophaworld.org) - will not only the production of biodiesel, but also contribute to wasteland reclamation and reforestation, as well as generating revenue in areas previously unusable. In november 2007 I went to Sumba, where I have been involved in rural development work and research in the field of rural economy and local politics since 1986, to see how this miracle works in practice.
National biofuel policy and legislation

The new legislation makes large-scale jatropha plantations financed by international companies. Presidential Regulation No. 5 of 2006 relating to national energy production production of biodiesel made official policy. Presidential Decree No. 10 of 2006 inaugurated a national team for the development of biofuels (Tim Nasional Bahan Bakar Nabati or Timnas BBN). Their task is to make a blueprint for the development of biofuels, with a corresponding delineation of the roadmap implementation. The terminology of the decision indicates a top-down approach reminiscent of the New Order. The promotion of biofuels includes the creation of "energy self-sufficient villages, but the biggest part of the policy is aimed at the macroeconomic level, where consumption targets and where the national legislation should be adapted to the "simplification of the licensing problems." The chairman of the national team, Al Hilal Hamdi, announced on January 9, 2007 that the investment agreements totalling U.S. $ 12.4 billion was signed that day, the largest in China and Malaysia. april new investment law of 2007 allows foreign investors to acquire land for an initial period of 60 years, offers tax benefits and the possibility of creating "special production of biofuels zones.

The current legislation seems to favour large international companies that can provide the necessary capital

Some national parliamentarians protested that the legislation meant "Indonesia is for sale." They argued that the law provides insufficient protection to local entrepreneurs, and that the equal status of these subsidies to foreign and domestic investment shows the government's historical apathy to Indonesia's colonial past. In the nineteenth century the Dutch East Indies government forced the cultivation of crops for export benefit the Dutch treasury. Indeed, colonial history and that of the more recent Green Revolution brings two important lessons. First, a system imposed on the commercial farming can threaten the food security of the primary producers. Secondly, large, high external input agriculture - as demonstrated during the Green Revolution - could lead to debts, loss of security and environmental damage. The production of Jatropha oil in the province of East Nusa Tenggara runs the risk of ignoring these lessons.
Jatropha on Sumba, november 2007

Jatropha pure vegetable oil obtained from the seeds can be used directly in a number of engines or blended into biodiesel. The Jatropha shrubs may be grown on marginal land (grasslands, fallow fields) that are not suitable for other types of cultivation. Sumba is full of "marginal land", but they are not "empty". They are sparsely populated, but the local population considers them a part of their ancestral land, which hold either communally Adat the framework of the law or in some cases even listed as crop land. The marginal nature of these areas is caused by poor soil, the shortage of rainfall and other sources of water, difficult access, lack of manpower, or combinations of these factors.
vel2.jpg
This Jatropha project in Tana modulation to Sumba failed because the farmers
lack of information and markets.
J. Vel

During the brief exploratory research in november 2007, I found four types of Jatropha cultivation in Sumba. First is the "demonstration plot, near the district capital of East Sumba Waingapu. The hotel is just half hour drive from the district government offices is a one-hectare site planted in May 2006 by the state corporation Rajawala Nusantara Indonesia (RNI). The condition of the plants was very bad. Local farmers have told me that the timing of the planting was wrong (just before the dry season), the site is wrong (to be so close to the sandy beach), the water was in short supply (in spite of irrigation water in driven by truck), And there was little attention to the crop. Yet this land is deemed suitable to show that investors Jatropha can grow on Sumba.

The second type I would call it 'plot of corruption. " One of these is located far inland on ancestral grounds of the clan, a member of the district parliament. The MP received extensive assistance from the government funds (channeled through the district government and RNI) for the production of Jatropha seedlings. Opinions about the state of the crop ranged from 20 percent do not (according to the MP itself) and 60-80 percent failed (according to the local farmers and the head of the Government Plantation Service). The plot is poorly controlled.

The third type is the domestic cultivation: Jatropha hedges around a house yards. The Jatropha plant is known since the Second World War, when the Japanese soldiers entered to make room for the oil lamps. Many Sumbanese still remember how their grandparents followed this example. The leaves are also used as medicine. Jatropha for domestic use is now by some NGOs. With relatively simple equipment, a nearby community can organize their own production of biodiesel for certain types of engines and thus save on expensive fossil fuels.

The fourth type I 'forced plot. " The Agricultural Service is promoting Jatropha cultivation in the area that is now Central Sumba since 2005. In Tana modulation, the farmers were invited to plant the crop on an area that since 1994 was a cashew plantation. Before 1994 the land was not used for agriculture, but it was a part of pasture for the local population of livestock. At the beginning of the cashew project, the country registered with the National Land Agency and the participating farmers their land certificates. In 2005, the Agricultural Service sent large tractors to all remaining cashew trees and preparing the land for Jatropha. Thereafter, farmers were planting and caring for the Jatropha itself. Every three or four months, they receive herbicides to the weeds in the Jatropha area. But in november 2007, I learned that none of these farmers has been given any information about the herbicide whether and how to apply them safely. Nor did they have any information about the current prices of Jatropha seeds, nor who would be willing for their crop. A farmer with a bag of Jatropha seeds to the city, where he was surprised to receive only Rp500 (about 6 cents) per kilogram. The cost of transport to the city and back were higher than the revenues. The production of one litre of biodiesel needed five kilograms of seeds. The farmers in Tana modulation were not motivated to continue farming, and that explains the poor state of their Jatropha fields in november 2007.
International investment and local interests

On August 16, 2007 a headline in the online edition of the Indonesian daily Kompas announced: "Swedish grow Jatropha: Investments of 1 trillion Rupiah. Land remains the property of the people." The article continues: "Scan Oil Ltd., a company from Sweden, 1 trillion will invest in a jatropha plantation in Central Sumba, East Nusa Tenggara. Planting will start from december 2007 on 10,000-20,000 hectares. "I was surprised by this news, because all the years I have been closely involved in I knew this area that foreign investment of this magnitude - more than U.S. $ 100 million - were absolutely beyond the imagination of the inhabitants of Middle-Sumba.

Contacts with international companies with an interest in investing in Jatropha had become an election tool

Not only the Swedish company showed an interest in Central Sumba. Companies from the United States, Japan, Malaysia and India also have their representatives for the assessment of the feasibility. Central Sumba was an autonomous district (kabupaten) in May 2007. The District government is still engaged in organizing themselves. The main objective is to reach Rp 5 billion (U.S. $ 540000) in local fiscal revenue in 2010, because otherwise the district will be absorbed in West Sumba. The first district head will be chosen in June 2008, and in november 2007, the competition between the candidates had already begun. Contacts with international companies with an interest in investing in Jatropha had become an election tool, with each candidate presenting its own investor as a guarantee for a social program now called "corporate social responsibility '. A fifth type of Jatropha cultivation on Sumba in november 2007 could thus be called the "imaginary commercial plantation."

The group of farmers in Tana modulation for a visit by a U.S. investor. He was accompanied by his Indonesian colleague, PT Abadi Cecilisarah from Jakarta, and an election candidate. The investor who the farmers a one-off price of U.S. $ 110 per hectare for the whole period of thirty years. The farmers feel in a strong position with their country of certificates, and rejected the offer as too low. But the interim district head told me on the same day that the district government had already issued the cultivation title rights to PT Cecilisarah Abadi, because the investments that they are in possession of the national and provincial levels permits from the government. He felt that all decisions regarding Jatropha plantations should be part of a Memorandum of Understanding between the three parties: the government, local producers and business owners. Yet there is a solid mechanism for these MoUs in a way that the interests of local producers were not yet available.

Large-scale biofuel plantations also work… either work or external mechanization

Large-scale plantations of biofuels require not only that country but also the labour and water. There is no precedent on Sumba for water management on this scale. Figures from similar situations in India shows that a well-maintained Jatropha plantation requires a full-time worker per hectare in the first year, and one for every four acres thereafter. A plantation of 10000 hectares would therefore have to 10000 workers in the first year. In Central Sumba that would present one third of the agricultural workforce. Given the alleged shortage of labour in agriculture as it is, it is not very likely that one third would shift to jatropha cultivation, nor that they could do so without prejudice to existing systems for the production of foodstuffs. Either outside employment or mechanization would be needed.
Farmers need information and protection

If even the most remote places in Indonesia - as Central Sumba - are made in the global value chain of production of biofuels, there must be action by the government to protect citizens involved in the chain. The current national legislation seems to favour large international companies that can provide the capital required. To see how the legislation can be more responsive to the interests of primary producers, consumers and local entrepreneurs, as well as the environment, requires more research.

As long as the farmers have no information on the crops, techniques, prices, laws and capabilities, the Jatropha miracle picture remains imaginary. The few examples found on Sumba in november 2007 show that an equitable distribution of benefits in the Jatropha value still far beyond reach. II

Jacqueline Vel (JACVel@law.leidenuniv.nl) is a researcher at the Van Vollenhoven Institute for Law, Policy and Development at the University of Leiden, Netherlands.
Within Indonesia 91: January-March 2008